Remote sensing of snow thaw at the pan-Arctic scale using the SeaWinds scatterometer
نویسندگان
چکیده
Remotely sensed estimates of snow thaw offer the potential of more complete spatial coverage across remote, undersampled areas such as the terrestrial Arctic drainage basin. We compared the timing of spring thaw determined from approximately 25 km resolution daily radar backscatter data with observed daily river discharge time series and model simulated snow water content data for 52 basins (5000–10,000 km) across Canada and Alaska for the spring of 2000. Algorithms for identifying critical thaw transitions were applied to daily backscatter time series from the SeaWinds scatterometer aboard NASA QuikSCAT, the observed discharge data, and model snow water from the pan-Arctic Water Balance Model (PWBM). Radar-derived thaw shows general agreement with discharge increases (Mean Absolute Difference, MADZ21 days, rZ0.45), with better agreement (16 days) in basins with moderate-high runoff due to snow thaw. Even better agreement is noted when comparing the scatterometer-derived primary thaw timing with model simulated snow water increase (MADZ14 days, rZ0.75). Good correspondence is found across higher latitude basins in western Canada and Alaska, while the largest discrepancies appear at the driest watersheds with lower snow and daily discharge amounts. Extending this analysis to the entire pan-Arctic drainage basin, we compared scatterometer-derived date of the primary (maximum) thaw with the timing of simulated snow water increases from the PWBM. Good agreement is found across much of the pan-Arctic; discrepancies for over half of the analyzed grid cells are less than one week. MADs are 11.7 days for the Arctic basin in Eurasian and 15.1 days across North America. Mean biases are low; 2.1 and K3.1 days for Eurasia and North America, respectively. Stronger backscatter response (high signal-low noise) is noted with higher seasonal snow accumulation, low to moderate tree cover and low topographic complexity. Although our results show inconsistent performance along coastal regions and warmer southerly parts of the study domain, active radar instruments such as SeaWinds offer the potential for monitoring high-latitude snow thaw at spatial scales appropriate for pan-Arctic applications Journal of Hydrology 312 (2005) 294–311 www.elsevier.com/locate/jhydrol 0022-1694/$ see front matter q 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jhydrol.2004.12.018 * Corresponding author. Tel.: C1 603 862 1053; fax: C1 603 862 0587. E-mail address: [email protected] (M.A. Rawlins). M.A. Rawlins et al. / Journal of Hydrology 312 (2005) 294–311 295 in near real time. Applications include hydrological model verification, analysis of lags between snow thaw and river response, and determination of large-scale snow extent. q 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Ten Years of SeaWinds on QuikSCAT for Snow Applications
The scatterometer SeaWinds on QuikSCAT provided regular measurements at Ku-band from 1999 to 2009. Although it was designed for ocean applications, it has been frequently used for the assessment of seasonal snowmelt patterns aside from other terrestrial applications such as ice cap monitoring, phenology and urban mapping. This paper discusses general data characteristics of SeaWinds and reviews...
متن کاملDependence of C-Band Backscatter on Ground Temperature, Air Temperature and Snow Depth in Arctic Permafrost Regions
Microwave remote sensing has found numerous applications in areas affected by permafrost and seasonally frozen ground. In this study, we focused on data obtained by the Advanced Scatterometer (ASCAT, C-band) during winter periods when the ground is assumed to be frozen. This paper discusses the relationships of ASCAT backscatter with snow depth, air and ground temperature through correlations a...
متن کاملPan-Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale Analyses (1981-2012)
Arctic ecosystems have been afflicted by vast changes in recent decades. Changes in temperature, as well as precipitation, are having an impact on snow cover, vegetation productivity and coverage, vegetation seasonality, surface albedo, and permafrost dynamics. The coupled climate-vegetation change in the arctic is thought to be a positive feedback in the Earth system, which can potentially fur...
متن کاملKu-, X- and C-Band Microwave Backscatter Indices from Saline Snow Covers on Arctic First-Year Sea Ice
In this study, we inter-compared observed Ku-, Xand C-band microwave backscatter from saline 14 cm, 8 cm, and 4 cm snow covers on smooth first-year sea ice. A Ku-, Xand C-band surface-borne polarimetric microwave scatterometer system was used to measure fully-polarimetric backscatter from the three snow covers, near-coincident with corresponding in situ snow thermophysical measurements. The stu...
متن کاملFrozen Soil Detection Based on Advanced Scatterometer Observations and Air Temperature Data as Part of Soil Moisture Retrieval
Surface soil moisture is one of the operational products derived from Advanced Scatterometer (ASCAT) data. The reliability of its estimation depends on the detection of predominantly frozen conditions of the landscape (including soil and vegetation) and the presence of wet snow, which would otherwise impede the estimation. As the robust determination of the freeze/thaw (F/T) state using exclusi...
متن کامل